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extends to high temperatures and intersects the C,C, critical curve at
‘critical end points’. Thesilica—water system is an example for this behaviour?>.

Two fluid components which are not too different, as for example ethane
and hexane, have a normal critical curve as in the upper left diagram of
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Figure 11. Critical curves of two-component systems.

Figure 11. If there is a greater difference in size, polarity, etc. the critical
curve may also be interrupted at a lower critical end point (LCEP) with an
upper branch as shown in the upper right diagram of Figure 11. This behaviour
can be interpreted as an interference between a liquid-liquid miscibility range
with the liquid-gas critical curve2*. If this upper branch of the critical curve
has a minimum temperature as in the diagram then the behaviour described
by the critical curve at pressures higher than the pressure of this minimum
temperature is sometimes called ‘gas—gas-immiscibility’. It has been predicted
by van der Waals and was demonstrated experimentally first by
Krichevskii2® 2 with nitrogen and ammonia in 1940. Since then, other
examples have been found?* % and discussed?”. Among these are carbon
dioxide—water2®, benzene-water®’, cthane-water®® and argon-water®'.
The upper branches of the critical curves of these systems are shown in
Figure 12.

They begin at the critical point of water and have a minimum temperature
with the exception of the water-argon system. The range of complete misci-
bility is always on the right side, that is on the high temperature side, of these
curves. One can have homogeneous mixtures of liquid-like densities at all
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AQUEOUS SOLUTIONS AT HIGH PRESSURES AND TEMPERATURES
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Figure 12. Critical curves of several binary aqueous systems.
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